Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

R. F. Henry,^a* G. Z. Zhang,^b Y. Gao^c and I. S. Buckner^d

^aAbbott Laboratories, Global Pharmaceuticals
Division, Department 418, Building AP9, 100
Abbott Park Road, Abbott Park, IL 60064, USA,
^bAbbott Laboratories, Global Pharmaceuticals
Division, Department R4P3, Building AP9, 100
Abbott Park Road, Abbott Park, IL 60064, USA,
^cAbbott Laboratories, Global Pharmaceuticals
Division, Department D4P#, Building AP9, 100
Abbott Park Road, Abbott Park, IL 60064, USA,
and ^dAbbott Laboratories, Global
Pharmaceuticals Division, Department D4P3,
Building AP9, 100 Abbott Park Road, Abbott
Park, IL 60064, USA

Correspondence e-mail: rodger.henry@abbott.com

Key indicators

Single-crystal X-ray study T = 193 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.052 wR factor = 0.147 Data-to-parameter ratio = 18.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Fenofibrate

The crystal structure of 1-methylethyl 2-[4-(4-chlorobenzoyl)phenoxy]-2-methylpropanoate, also known as fenofibrate, $C_{20}H_{21}ClO_4$, has been determined and is presented here. The compound crystallizes in space group $P\overline{1}$ and is notable for its lack of hydrogen-bond donors and thus a lack of hydrogen bonding.

Comment

Fenofibrate belongs to a class of compounds, fibric acid derivatives, which are used to treat hypercholesterolemia or mixed dyslipidemia (Kloer, 1987). The physicochemical properties of fenofibrate, including solubility, hygroscopicity, distribution coefficient, and solid-state characterization, have been studied in detail (Shoji *et al.*, 1995). Recently, a meta-stable polymorph was reported (Di Martino *et al.* 2000); in that paper the original polymorph and the newly discovered polymorph were designated forms I and II, respectively. In this paper, we report the molecular structure of fenofibrate form I.

Fenofibrate form I (see Scheme) crystallizes in the centrosymmetric triclinic space group $P\overline{1}$. The molecule lacks hydrogen-bond donating groups, making it impossible for the structure to contain any type of hydrogen bonding. In the absence of hydrogen-bonding interactions, the molecules are arranged head-to-head and tail-to-tail, producing aliphatic and aromatic layers. These layers are perpendicular to the caxis. An interesting feature of the conformation of the molecule is the symmetrical nature of the isopropyl ester. A survey of the CSD (Allen, 2002) found 115 structures containing isopropyl esters. These 115 structures contained a total of 171 isopropyl ester fragments. The symmetry of the isopropyl ester was measured as the torsion angle between the carbonyl carbon, esteric sp^3 oxygen, isopropyl methine carbon and the centroid of the two methyl groups. Values near zero or 180° would indicate a highly symmetric orientation of the isopropyl group. In this orientation, the isopropyl group's bisecting mirror plane coincides with the plane of the two O atoms and one carbon of the carbonyl group. The mean value found for this torsion angle was 150.7°. The value nearest 180° was 174.6° (Newkome et al., 1985). The corresponding torsion angle in fenofibrate is 178.0°, making it the most symmetric crystallographically characterized isopropyl ester.

Received 24 March 2003 Accepted 14 April 2003 Online 30 April 2003

Experimental

Crystals were grown by slow evaporation of an ethanol solution.

Z = 2

 $D_{\rm v} = 1.285 {\rm Mg m}^{-3}$

Cell parameters from 6105

Parallelepiped, colourless

 $0.4 \times 0.4 \times 0.4$ mm

Mo $K\alpha$ radiation

reflections

 $\mu = 0.23 \text{ mm}^{-1}$

 $\theta = 2.5 - 28.3^{\circ}$

T = 193 K

Crystal data

 $\begin{array}{l} C_{20}H_{21}{\rm CIO}_4 \\ M_r = 360.82 \\ {\rm Triclinic}, \ P\overline{1} \\ a = 8.1605 \ (16) \ {\rm \mathring{A}} \\ b = 8.2664 \ (16) \ {\rm \mathring{A}} \\ c = 14.511 \ (3) \ {\rm \mathring{A}} \\ \alpha = 93.951 \ (3)^\circ \\ \beta = 105.664 \ (3)^\circ \\ \gamma = 96.002 \ (3)^\circ \\ V = 932.5 \ (3) \ {\rm \mathring{A}}^3 \end{array}$

Data collection

Bruker SMART Apex CCD
diffractometer3694 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.065$
 ω scans ω scans $\theta_{max} = 28.3^{\circ}$
 $h = -9 \rightarrow 10$
6105 measured reflections $k = -10 \rightarrow 10$
4225 independent reflections $l = -19 \rightarrow 19$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.147$ S = 1.064225 reflections 230 parameters H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1706P)^{2} + 0.7796P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.301$ $\Delta\rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.34 \text{ e} \text{ Å}^{-3}$

H atoms were treated as riding atoms (C-H = 0.93 and 0.97 Å). $U_{\rm iso}$ values for H atoms were fixed at 1.2 times $U_{\rm eq}$ of the parent atom.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 1999); data reduction: *SAINT-Plus* (Bruker, 1999); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *ORTEPII* (Johnson, 1976).

Figure 1

A view of fenofibrate, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bruker (1999). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.
- Di Martino, P., Palmieri, G. F. & Martelli S. (2000). Pharmazie, 55, 625-626.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee. USA.
- Kloer, H. U. (1987). Am. J. Med. 83 (suppl 5B), 3-8.
- Newkome, G. R., Puckett, W. E., Kiefer, G. E., Gupta, V. K., Fronczek, F. R., Pantaleo, D. C., McClure, G. L., Simpson, J. B. & Deutsch, W. A. (1985). *Inorg. Chem.* 24, 811.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shoji, R., Watanabe, T., Tashiro, S. & Shi, S. (1995). *Iyakuhin Kenkyu*, 26, 386– 397.